Functional analysis Sheet — SS 23 Exam of Functional Analysis

1 Linear Analysis

- 1. THEORY: Let H be a Hilbert space, and A be a bounded self-adjoint operator on H.
 - (i) Recall the definitions of spectrum $\sigma(A)$, point spectrum $\sigma_p(A)$, continuous spectrum $\sigma_c(A)$
 - (ii) Characterize $\sigma(A)$, $\sigma_p(A)$ and $\sigma_c(A)$, in terms of the projection-valued measure associated with A (with proof)
 - (iii) Suppose f is continuous and not non-negative on $\sigma(A)$. Prove that there exists $u \in H$ such that $\langle u, f(A)u \rangle < 0$
- 2. PRACTICE: Let A be the operator on C([0,1]), equipped with the sup norm, defined by the formula

$$Au(t) = \frac{1}{t} \int_0^t u(s)ds, \qquad Au(0) = u(0)$$

- (i) Compute the norm and the spectral radius of ${\cal A}$
- (ii) Find the eigenvalues of ${\cal A}$
- (iii) Is A compact?
- (iv) Discuss whether $\lambda=0$ is in the spectrum, and determine its nature
- 3. BONUS: A bounded linear operator $U \in \mathcal{L}(H)$ on a Hilbert space H is unitary if $UU^* = U^*U = \mathbb{I}$, and two operators $A, B \in \mathcal{L}(H)$ are unitarily equivalent if there exists a unitary operator such that $UAU^* = B$. Prove whether the following pairs of operators are unitarily equivalent or not:
 - (i) The operators multiplication by f(t) = t and $f(t) = t^2$ on $L^2([0, 1])$
 - (ii) The operators multiplication by f(t) = t and $f(t) = t^2$ on $L^2([0, 2])$

2 Nonlinear analysis

1. THEORY: Discuss the existence of solutions of the Sturm-Liouville operator

$$\begin{cases} -u'' + V(x)u = g\\ u(0) = u(1) = 0 \end{cases}$$

for $V, g \in C^0([0, 1])$ (do not prove Lax-Milgram, but apply it).

2. PRACTICE: Consider the semilinear Dirichlet problem

(D)
$$\begin{cases} u'' + au + b(u) = h(x), \\ u(0) = u(1) = 0 \end{cases}$$

with $h \in C^0([0,1])$ and $b \in C^1(\mathbb{R})$. Assume that $a \notin \{n^2 \pi^2\}_{n \in \mathbb{N}}$ and that

- (H1) exists M > 0 such that $|b(s)| \le M$ for all $s \in \mathbb{R}$;
- (H2) $a + b'(s) < \pi^2$ for all $s \in \mathbb{R}$.

Prove that for all $h \in C^0([0,1])$ there exists a unique classical solution to (D) following the following scheme:

(i) prove the uniqueness of solutions;

(Hint: you will need the Poincaré inequality with the best constant

$$\int_0^1 u^2 \mathrm{d}x \le \frac{1}{\pi^2} \int_0^1 (u')^2 \mathrm{d}x \ , \quad \forall u \in H_0^1 \ . \tag{1}$$

You do not need to prove it.)

- (ii) prove that Im(G(u)) is open, where G(u) := u'' + au + b(u);
- (iii) prove that $\operatorname{Im}(G(u))$ is closed;

(*Hint:* take a sequence $(h_n)_n \subset L^2$ such that $h_n \to h$ in L^2 and consider $(u_n)_{n \in \mathbb{N}} \subseteq H_0^1$ with $G(u_n) = h_n$. Assume that $(u_n)_{n \in \mathbb{N}}$ is unbounded in L^2 , and deduce a contradiction for $z_n := u_n / \|u_n\|_{L^2}$.)